The Poisson summation formula for manifolds with boundary

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Poisson Summation Formula and Lower Bounds for Resonances in Hyperbolic Manifolds

For convex co-compact hyperbolic manifolds of even dimension n + 1, we derive a Poisson-type formula for scattering resonances which may be regarded as a version of Selberg's trace formula for these manifolds. Using techniques of Guillop e and Zworski we easily obtain anO R n+1 lower bound for the counting function for scattering resonances together with other lower bounds for the counting func...

متن کامل

Sharp Embeddings for Modulation Spaces and the Poisson Summation Formula

In this paper we sharpen a theorem of Gröchenig about embedding weighted Lp-spaces into a modulation space. The theorem is closely related to the problem of pointwise convergence in the Poisson summation formula (PSF). We also show that this sharp version is optimal in some sense by extending a family of counterexamples to PSF also due to Gröchenig. The proof requires new techniques, namely the...

متن کامل

Poisson Summation Formula for the Space of Functionals

In our last work, we formulate a Fourier transformation on the infinitedimensional space of functionals. Here we first calculate the Fourier transformation of infinite-dimensional Gaussian distribution exp ( −πξ ∞ −∞ α 2(t)dt ) for ξ ∈ C with Re(ξ) > 0, α ∈ L2(R), using our formulated Feynman path integral. Secondly we develop the Poisson summation formula for the space of functionals, and defi...

متن کامل

A Poisson Formula for Conic Manifolds

Let X be a compact Riemannian manifold with conic singularities, i.e. a Riemannian manifold whose metric has a conic degeneracy at the boundary. Let ∆ be the Friedrichs extension of the Laplace-Beltrami operator on X. There are two natural ways to define geodesics passing through the boundary: as “diffractive” geodesics which may emanate from ∂X in any direction, or as “geometric” geodesics whi...

متن کامل

Morse’s index formula in VMO for compact manifolds with boundary

In this paper, we study Vanishing Mean Oscillation vector fields on a compact manifold with boundary. Inspired by the work of Brezis and Niremberg, we construct a topological invariant — the index — for such fields, and establish the analogue of Morse’s formula. As a consequence, we characterize the set of boundary data which can be extended to nowhere vanishing VMO vector fields. Finally, we s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1979

ISSN: 0001-8708

DOI: 10.1016/0001-8708(79)90042-2